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Many Automated Theorem Prover (ATP) systems for different logical forms, and

translators for translating different logical forms from one to another, have been

developed and are now available. Some logical forms are more expressive than others,

and it is easier to express problems in those forms. On the other hand, the ATP

systems for less expressive forms have been tested for many years, and are more

powerful and reliable. There is a trade-off between expressivity of a logical form,

and power and reliability of the available ATP systems. Different ATP systems and

translators can be combined to solve a problem expressed in a logic. In this research,

an experiment has been designed and carried out to compare all different possible

ways of trying to solve a problem. The possibilities are either to use an ATP system

for the original form, or translate the problem to a less expressive form. If the

problem is translated to a less expressive form, then again the same two possibilities

are available, until no further translation is possible. No translator was available to

translate from Conjunctive Normal Form to Description Logic, which sits between

Effectively Propositional Logic and Propositional Logic in terms of expressivity. A

translation procedure for translating Conjunctive Normal Form to Description Logic,

and its implementation as Saffron are presented. Additionally, this research includes
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a survey of different logical forms. Propositional Logic, Description Logic, First

Order Form, Conjunctive Normal Form, Effectively Propositional, Typed First order

Form - monomorphic, Typed First order Form - polymorphic, Typed Higher order

Form - monomorphic. The properties, syntax, and semantics of each logical form are

briefly described. For each form, the most popular ATP systems and translators for

translating to a less expressive forms are introduced.
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Chapter 1

Introduction

Sound (valid) reasoning deals with the process of determining whether or not a con-

clusion follows inevitably from some accepted facts. Example 1 presents a set of fact

statements A, and a conclusion statement C. Testing whether the set of facts A

leads to the conclusion C can be done by considering one or both of two perspectives.

One perspective is the semantic perspective, in which the meaning of the sentences

is considered. From basic mathematics, it is known that four is divisible by two be-

cause four is an even number, and all even numbers are divisible by two. The other

perspective is the syntactic perspective. In this perspective, without considering the

mathematical rules for numbers, only by considering the structure of the statements

and applying logical rules, the statement four is divisible by two can be con-

cluded from the statements All even numbers are divisible by two and four

is an even number.

1
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Example 1

Sound reasoning deals with the process of determining whether or not a

conclusion follows inevitably from some accepted facts.

A = { All even numbers are divisible by two,

Four is an even number}

C = Four is divisible by two

Logic is used to formalize these notions. A logic consists of a syntax and a seman-

tics. The syntax is used to write statements about a domain as a set of formalized

statements, formulae. A logic problem consists of some axiom formulae (the fact

statement) and a conjecture formula (the conclusion).

The semantics of a logic is expressed in terms of interpretations. An interpretation

of a problem relates the symbols of the problem to entities of the real world, and

assigns TRUE or FALSE to each formula of the problem by applying interpretation

rules. An interpretation that evaluates a formula to TRUE is a model of the formula.

An interpretation that evaluates all formulae in a set of formulae to TRUE is a model

of the set of formulae. A set of formulae is satisfiable if and only if it has at least

one model. A set of formulae is unsatisfiable if and only if it has no models. The

conjecture of a logic problem is a logical consequence of its axioms if every model of

the axioms is a model of the conjecture. The conjecture of a problem is a theorem if it

is a logical consequence of the axioms of the problem. On the contrary, the conjecture

of a problem is a nontheorem if it is not a logical consequence of the axioms of the
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problem. Sound reasoning processes typically use a syntactic perspective to establish

that a conjecture is a theorem.

An alternative way to check if the conjecture of a problem is a theorem is to check if

the union of the axioms and the negated conjecture has no model, i.e. is unsatisfiable.

A common approach is to apply satisfiability preserving transformations from the set

consisting of the axioms and the negated conjecture. If these lead to an obviously

unsatisfiable set, e.g. a set containing an empty formula, then it is known that the

original set is unsatisfiable, and hence, the conjecture is a theorem of the axioms.

From now on in this thesis, logic problems are expressed in this form, i.e. a set

consisting of the axioms and the negated conjecture.

A logic is decidable if for every problem expressed in that logic it can be determined

if it is satisfiable or unsatisfiable in a finite time. A logic is undecidable if it is not

decidable, i.e., there is at least one problem in that logic for which the satisfiability

cannot be determined in a finite time. A logic is semi-decidable if for every problem

expressed in that logic, it can be determined whether it is unsatisfiable (in a finite

time), but the satisfiability of some problems in that logic cannot be determined.

Some logics are decidable, but many are semi-decidable or undecidable.

To express a problem in a logical form, different logics with different levels of

expressivity are available. Expressing a problem in a more expressive logic is easier

because it is more natural and compact, but it is more difficult to reason about a

problem in a more expressive form. On the other hand, expressing a problem in a less

expressive logic is more difficult, but it is easier to reason about the problem. It is

possible to translate a problem in one logic to another logic. A translation from one
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logic to another is a satisfiability preserving translation if every satisfiable problem in

the source logic remains satisfiable in the destination logic after the translation.

1.1 Automated Theorem Proving (ATP) and Thou-

sands of Problems for Theorem Provers (TPTP)

Automated Theorem Proving (ATP) [1] is concerned with developing automatic

techniques and computer programs for checking whether the conjecture of a logic

problem is a theorem. An ATP system is a program that automatically checks whether

the conjecture a problem is a theorem. Many logics have ATP systems available. The

example of available ATP systems are iProver, Vampire [2], and Princess [3].

Many satisfiability preserving translators for translating a problem in one logic

to another one have been implemented [4]. Examples of available translators are

Monotonox [5] and ECNF [6]. For the goals of this research, only translations from

more expressive logic to less expressive ones are interesting.

The Thousands of Problems for Theorem Provers (TPTP) [7] is a comprehensive

library of test problems for ATP systems and translators. It also includes software

tools that facilitate using the ATP systems and translators. The TPTP was developed

to make evaluating and comparing ATP systems and translators possible by provid-

ing general guidelines, outlining the requirements for ATP system evaluation, and

standards for input and output for ATP systems. The TPTP provides syntaxes for

logics that can be input on standard keyboards without use of special mathematical

characters.
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The TPTP library of sample problems, the ATP systems available in the

SystemOnTPTP [8], and the translators in the SystemB4TPTP [8], have been the source

of test problems, ATP systems, and translators in this research. Also, software tools

of the TPTP have been used to execute ATP systems and translators over the sample

problems.

1.2 Related Conferences and Competitions

The two major forums for presentation of new research about different aspects of

ATP and the development of new ATP systems and translators are the Conference

on Automated Deduction (CADE) and International Joint Conference on Automated

Reasoning (IJCAR) [9]. These conferences were started in 1974, and were held every

two years in the beginning, and every year since 1996. At each CADE and IJCAR

conference, the CADE ATP System Competition (CASC) [10] is held to introduce

and evaluate contestant ATP systems. CASC evaluates the performance of sound

and fully automatic ATP systems. The source of test problems for the competition

is the TPTP library. To evaluate an ATP system, the number of problems solved

within a time limit, the number of problems solved with a solution output within a

time limit, and the average runtime for problems solved are considered.

CASC is the main basis for selecting the ATP systems used in the experiments in

this research. Most of the ATP systems are the winners of the latest competitions.
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1.3 Research Goals

Propositional Logic, Description Logic (DL), First Order Form (FOF), Conjunctive

Normal Form (CNF), Effectively Propositional Form (EPR), Typed First order Form-

monomorphic (TFF0), Typed First order Form-polymorphic (TFF1), and Typed

Higher order Form-monomorphic (THF0) are some of the logics supported by the

TPTP. These logics and their properties are discussed in Chapter 2.

As illustrated in the Figure 1.1, a real-world problem is first expressed in a logic

as a logic problem. The logic problem can be either solved using the ATP system of

that logic or translated to a less expressive logic. If it is translated to less expressive

logic, again the same two options of translating down (if possible), and solving an

ATP system are available. This continues until no further translation is possible. In

Figure 1.1, the double line arrows represent the encoding of a domain problem in

the original logic in which the problem is expressed, the plain arrows are available

translations, and the dashed arrows are reasoning.

Going down from the more expressive logics to less expressive logics, the expres-

sivity of the logic decreases. On the other hand, the ATP systems for less expressive

logics are more powerful and more trustworthy than the more expressive ones be-

cause they have been tested for many years, compared to more expressive logic ATP

systems. There are translators that can be used to translate a problem in a more

expressive logic down to less expressive ones. A problem can be expressed in more

expressive logic to benefit from the expressivity of the logic, then translated down to

a less expressive logic to benefit from the power of the ATP systems. In the process
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of translating between two logics extra complexity might be added to the problem,

which affects the performance of the ATP system. There is is a trade-off between

power of the ATP system for a logic and the effect of translating to the destination

logic. The choice of reasoning using an ATP system of the original logic, or translating

to a less expressive logic, is the major concern of this research.

Figure 1.1: Different Combinations of Translators and ATP Systems to Solve a Prob-
lem
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1.4 Road Map

This thesis is organized as follows. Chapter 1 contains an introduction to the research

and related issues, to build up a basis for understanding the thesis. In Chapter 2 a

survey of the logics related to the research is presented. Chapter 3 describes a trans-

lation procedure from CNF to DL, and its implementation as Saffron. Additionally,

it includes a discussion of the results of testing Saffron on sample problems. In

Chapter 4 the experiment to evaluate different ways of reasoning about logic prob-

lems in different logical forms is described, and its results are analyzed and discussed.

Finally, Chapter 5 contains the summary of the whole thesis and conclusions.
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Chapter 2

Survey of Logic

In this chapter the logical forms Propositional logic, Description Logic (DL) First

Order Form (FOF), Conjunctive Normal Form (CNF), Typed First order Form-

monomorphic (TFF0), Typed First order Form-polymorphic (TFF1), and Typed

Higher order Form-monomorphic (THF0) are described.

2.1 Propositional Logic

Propositional logic is a decidable logic. Examples of applications of propositional

logic include designing digital circuits [11], encoding constraint satisfaction problems

[12], and reasoning about specifications [13].

2.1.1 Syntax

The syntax of propositional logic consists of propositions and logical operators. Some

examples of propositions are presented in the Example 2.

9
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Example 2

coffee helps me stay awake

coffee is my favorite drink

p

q

By combining different propositions using logical operators, propositional formulae

can be generated.

Operators in propositional logic.

Negation. ¬ is a unary prefix operator, and negates the proposition.

Example 3

¬coffee is my favorite drink

¬p

And. ∧ is a binary infix operator. It is the conjunctive operator, and can be

interpreted as English “and”.

Example 4

coffee helps me stay awake ∧ coffee is my favorite drink

Or. ∨ is a binary infix operator. It is the disjunctive operator, and can be inter-

preted as English “or”.
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Example 5

coffee helps me stay awake ∨ coffee is my favorite drink

Implication. ⇒ is a binary infix operation, and can be interpreted as English “if-

then”.

Example 6

coffee helps me stay awake ⇒ coffee is my favorite drink

Equivalence . ⇔ is a binary infix operation, and can be interpreted as English

“if-and-only-if”.

Example 7

coffee helps me stay awake ⇔ coffee is my favorite drink

In TPTP, different symbols are used for some logical operators. The symbols &, |,

=>, and <=> in TPTP are respectively equivalent to the ∧, ∨,⇒, and⇔mathematical

symbols.

2.1.2 Semantics

A propositional logic interpretation assigns either TRUE or FALSE to each proposition.

The truth value of a formula is determined by a considering the values of its propo-

sitions. The truth table of each operator holds the resulting value of any possible

combination of the values of the propositions. Table 2.1 shows the truth tables of all

the binary operators.
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Table 2.1: Example of a Truth Table
p q p∧q p∨q p⇒q p⇔q

TRUE TRUE TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE FALSE FALSE

FALSE TRUE FALSE TRUE TRUE FALSE

FALSE FALSE FALSE FALSE TRUE TRUE

2.1.3 ATP Systems

Two ATP systems for propositional logic are MiniSat [14] and ZChaff [15]. In this

research, MiniSat is used for reasoning about problems expressed in propositional

logic. Different versions of MiniSat have been implemented for different applications,

and they are implemented in different languages, such as C# and C++. Version

2.2.0, used in this research, is in C++. Examples of the reasoning techniques applied

in MiniSat are conflict-clause recording and conflict-driven back jumping. MiniSat

is a powerful solver, and was the winner of SAT-Race in 2008 [16].

2.2 Description Logic

Description Logic (DL) is a logical form for knowledge representation [17]. It is a

decidable logical form, and is more expressive than propositional logic. DL is applied

mostly in semantic web technologies [17]. A major application of DL is expressing

ontologies. An ontology includes a categorization of elements of a domain of interest,

definitions of the relationships between these categories, and knowledge about the

domain.
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2.2.1 Syntax

Manchester OWL Syntax [18] and exchange syntaxes like XML or RDF/XML are

popular syntaxes for Description Logic. In this research, RDF syntax is used. Exam-

ple 8 can be expressed in DL.

Example 8

8.a. Coffee is a drink.

8.b. Negin is a person.

8.c. Coffee is Negin’s favorite drink.

The building blocks of DL are individuals, classes, and roles.

Individuals are equivalent to constants in First Order Form (FOF) (see Section 2.3)

or Conjunctive Normal Form (CNF) (see Section 2.3.2). For example, in the sentences

“Coffee is a drink”, and “Negin is a person”, coffee and Negin are individuals. In

DL, the two individuals would be expressed as Example 9.

Example 9

<owl:NamedIndividual rdf:about="coffee"/>

<owl:NamedIndividual rdf:about="negin"/>

Classes are sets of individuals. Every individual belongs to one or more classes.

A class can be empty, finite, or infinite. Classes are same as unary predicates in FOF

or CNF. The default class is Thing. If an individual does not belong to a class, then

it belongs to only the default class Thing. A class can be a subclass of, equivalent
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to, disjoint to, or the complement of another class. It can also be a conjunction or

disjunction of other classes. All these relationships between classes are the same as

the corresponding relationships between two sets. By default, every class is a subclass

of Thing so that every member of each class is also a member of the default class

Thing. The empty class in DL is class Nothing, which has the properties of the empty

set. In Example 8 , Coffee belongs to the class Drink, and Negin belongs to the

class Person. Examples 10 and 11 are the DL syntax for Examples 8.a and 8.b.

Example 10

<owl:Class rdf:about="Drink"/>

<owl:NamedIndividual rdf:about ="coffee">

<rdf:type rdf:resource="#Drink"/>

</owl:NamedIndividual>

Example 11

<owl:Class rdf:about="Person"/>

<owl:NamedIndividual rdf:about="negin">

<rdf:type rdf:resource="#Person"/>

</owl:NamedIndividual>

Individuals can be related one to another by roles. In RDF syntax, roles are

declared using object property tags. In Example 8.c, the role of coffee is Negins

favorite drink. Example 12 is the DL syntax for Example 8.c.
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Example 12

<owl:ObjectProperty rdf:about="favoriteDrink">

</owl:ObjectProperty>

<owl:NamedIndividual rdf:about="coffee">

<favoriteDrink rdf:resource="#negin"/>

</owl:NamedIndividual>

There are different variations of DL. ALC is the basic DL, which includes the

language constructs, such as classes, roles, individuals, class membership and role

instances, conjunction, disjunction and negation of classes. One of the more expressive

variations of DL is SROIQ. Each letter of the word SROIQ represents a feature in

this variation of DL.

S All the ALC features.

R Limited complex role inclusion axioms such as reflexivity, irreflexivity, and role

disjointness.

O Nominals (closed classes with a finite number of elements).

I Inverse properties.

Q Qualified cardinality restrictions.

SROIQ is the target description logic in this research. Most of its features are

covered by Saffron, the CNF to DL translator presented in the Chapter 4.

2.2.2 Semantics

An interpretation of a DL problem consists of a nonempty set, a domain, and an

interpretation function. The interpretation function maps every individual in the

problem to an element in the domain. Additionally, the interpretation function maps
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every class in the problem to a subset of the domain, maps the default class Thing

to the domain, and the empty class Nothing to the empty set. The interpretation

function also maps every role to a subset of the set of all pairs of elements of the

domain.

2.2.3 ATP Systems

FaCT++ [19] and HermiT [20] are examples of ATP systems for DL. FaCT++ is an open-

source ATP system for SROIQ, implemented in C++. The FaCT++ decision procedure

is tableau-based [19]. HermiT is also an open-source ATP system for SROIQ, imple-

mented in Java. The HermiT decision procedure is hypertableau-based [20].

2.3 First Order Form, Conjunctive Normal Form

and Effectively Propositional Form

2.3.1 First Order Form (FOF)

To express some statements in a logical form, a more expressive form than propo-

sitional logic or description logic is required. Examples 13.a and 13.b cannot be

expressed in propositional logic or description logic, but they can be expressed in

FOF.
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Example 13

13.a. Coffee is some people’s favorite drink.

13.b. Coffee helps everybody stay awake.

FOF Syntax

Examples 14.a and 14.b are the FOF syntaxes for sentences 13.a and 13.b in Exam-

ple 13.

Example 14

14.a. ∃ X is(coffee,favorite drink of(X))

14.b. ∀ Y helps stay awake(coffee,Y)

There are three sets of symbols in FOF, variables, functions, and predicates. In

Example 14.a, X and Y are variables. The symbols coffee and favorite drink of

are functions with zero and one argument respectively. The number of arguments

of a function is called the arity. Functions can have any arity greater than or equal

to zero. Functions with zero arguments are also called constants. The symbols is

and helps stay awake are predicates, both with two arguments. Predicates can have

any arity greater than or equal to zero. Predicates with zero arity are the same as

propositions in propositional logic.

Terms are built of functions and variables, and atoms are built of predicates

applied to terms. Ground terms and ground atoms are terms and atoms without any

variables. By combining atoms using logical operators, more complex formulae can
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be constructed. The logical operators of FOF are the same as the logical operators of

propositional logic, with two extra quantifiers, the Existential Quantifier ∃ and the

Universal Quantifier ∀. For example, ∃ is the existential quantifier in Example 14.a,

which quantifies over the variable X, and ∀ is the universal quantifier in Example 14.b,

which quantifies over the variable Y. The TPTP symbols for ∃ and ∀ are ? and !

respectively.

FOF Semantics

An interpretation of a FOF language includes a domain, a function map, and a

predicate map. The domain of an interpretation is a nonempty set. The function map

defines a function for each function symbol, from n-tuple elements of the domain to

an element of the domain, where n is the arity of the function symbol. (Thus, every

constant of the problem is mapped to an element of the domain.) The predicate map

defines a function for each predicate symbol from m-tuple elements of the domain to

{TRUE, FALSE}, where m is the arity of the predicate. Atoms can only get the values

of TRUE and FALSE. An interpretation is used to map ground terms to domain elements

and ground atoms to {TRUE, FALSE}. The interpretation of logical operators of FOF,

other than quantifiers, are the same as for propositional logic. The interpretations of

the existential quantifier and the universal quantifier are as follows.

• Existential Quantifier ∃. If an existential quantifier quantifies over a variable

in a formula, then there should be at least one element in the domain of the

interpretation that makes the formula TRUE.
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• Universal Quantifier ∀. If an existential quantifier quantifies over a variable in a

formula, then all the elements in the domain the of interpretation should make

the formula TRUE.

Herbrand Interpretation. The Herbrand Universe of a FOF problem is the set

of ground terms. The Herbrand Base is the set of all ground atoms. A Herbrand in-

terpretation is an interpretation of a FOF problem if the domain of the interpretation

is the Herbrand Universe. The function map of the Herbrand interpretation is the

identity function. The predicate map of the Herbrand interpretation is a subset of

the Herbrand Base that maps to TRUE.

FOF ATP Systems

Many FOF ATP systems are available. Examples of FOF ATP systems are Vampire

[2], SPASS [21], Z3 [22], E—Darwin, and Darwin [23].

In this research, Vampire is used. The current version of Vampire was implemented

at the University of Manchester, England. Vampire was the winner of CASC-J6 FOF

and LTB divisions in 2013. This ATP system is written in C++ and consists of two

layers, the shell and the kernel. The shell accepts problems in FOF or CNF. It then

transforms the input to CNF if it is not already CNF. The CNF is passed to the

kernel for reasoning. To increase efficiency, the search space is pruned by omitting

redundancies, applying operations such as subsumption and removing tautologies.

The kernel of Vampire supports equality, and handles equality by implementing the

calculi of ordered binary resolution and superposition.



www.manaraa.com

20

FOF Translators

FOF problems can be translated to less expressive logical forms. There is a satis-

fiability preserving procedure to translate FOF problems to CNF. There are some

translators available, such as ECNF [6] and VCNF [2]. In this research, ECNF is used.

ECNF is a subsystem of the E [24] ATP system, which was first started in the Tech-

nische Universitat Munchen, Germany. ECNF is used to clausify FOF without using

advanced Skolemization techniques. This technique is explained in [25].

Some FOF problems can be translated to a DL, but there is no translator available

for this purpose yet.

2.3.2 Conjunctive Normal Form

CNF Syntax

Each formula in FOF can be translated to an equisatisfiable CNF formula. Each

problem in CNF is a conjunction of clauses, and each clause is a disjunction of some

literals. A literal is an atom either with or without the negation sign. An empty

clause has no literals. In a CNF problem, all variables are universally quantified.

Example 15 is an example of a CNF formula with three clauses.

Example 15

(a(X,Y)∨b∨c(T,S))∧(¬a(X,V)∨b)∧(d(R)∨¬b∨c(V,S)∨e(X,V,T))
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CNF Semantics

CNF semantics are the same as FOF semantics. Every set of clauses has a model if

and only if it has a Herbrand model. This is the basis for building sound inference

rules for a set of clauses, e.g., resolution, as used in Vampire.

CNF ATP Systems

Most FOF ATP systems can also be used for CNF. All the FOF ATP systems,

mentioned in Subsetion 2.3.1, except for Z3 are also CNF ATP systems.

CNF Translators

There are a few translation tools to translate CNF problems to less expressive logics.

Some CNF problems can be translated to DL. In this research a translator for this

purpose is developed, and is described in Chapter 4.

2.3.3 Effectively Propositional Form (EPR)

CNF problems with a finite Herbrand Universe are called Effectively Propositional

(EPR) problems. EPR is a decidable fragment of CNF. It is also decidable to check if

a CNF problem is EPR or not. A problem with no functions of arity more than zero

has a finite Herbrand Universe and is EPR. In addition, if a problem has a function

with arity more than zero, but does not have any variables or equality, then it is an

EPR problem. It can be checked if in a problem, either there is no function, or all the

functions are constants. Additionally, in a problem with functions with arity more

than or equal to one, it can be checked if there are any variables or equality.
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EPR ATP Systems

All CNF ATP systems can also be used for EPR problems. In this research iProver [26]

is used for reasoning about EPR problems. iProver is the winner of the EPR division

at all CASC from 2008 to 2012.

EPR Translators

All EPR problems can be translated to propositional logic. In this research, EGround

[27] is used to translate EPR problems to propositional logic. EPR problems and the

set of all of their ground instances are equisatisfiable. To translate an EPR problem,

EGround generates the ground instances of the problem. Since the number of the

ground instances is exponential to the number of variables in a clause, i.e. with n

constant symbols a clause with m variables has nm ground instances, EGround applies

clause splitting, structural constraints, and propositional simplification techniques to

reduce the number of ground instances.

2.4 Typed First-order Form - monomorphic (TFF0)

TTF0 [24] is the monomorphic typed first-order logic with predefined and user-defined

types. It supports ad-hoc polymorphism for only equality and some defined symbols.
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2.4.1 Syntax

The syntax described here is the syntax used in the TPTP. The defined types are

$i for individuals and $o for booleans. Any user-defined type is of type $tType.

Example 16 can be expressed in TFF0.

Example 16

16.a. Negin is a person.

16.b. Coffee is a beverage.

16.c. Vanilla syrup is a syrup.

16.d. The mixture of a syrup and a beverage is a beverage.

16.e. The mixture of coffee and any syrup helps some people stay awake.

In Example 16, person, beverage, and syrup are types. Statements 16.a, 16.b,

and 16.c are expressed in TFF0 as Example 17.

Example 17

tff(person type, type, person: $tType ).

tff(beverage type, type, beverage: $tType ).

tff(syrup type, type, syrup: $tType ).

The types of a function’s arguments and its return type are specified at the time

of declaration. In Example 16, Negin, coffee, vanilla syrup and mixture are

functions, and are expressed in TFF0 as Example 18.
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Example 18

tff(negin type, type, negin: person).

tff(coffee type, type, coffee: beverage).

tff(vanilla syrup type, type, vanilla syrup: syrup).

tff(mixture type, type, mixture: beverage * syrup > beverage).

If a function is not declared, the default type of its arguments and return type is

$i.

A predicate is a mapping from the types of its arguments to type $o. The types

of a predicate’s arguments are specified at the time of declaration. In Example 16,

“helps stay awak” is a predicate, and is expressed in TFF0 as Example 19.

Example 19

tff(help stay awake type, type,

help stay awake: person * beverage > $o).

If a predicate is not declared, the default types of all of it’s arguments are $i.

Statements 16.d and 16.e are expressed in TFF0 as Example 20. S and P are

variables of type syrup and person. The types of variables are specified at the time

of quantification. If the type of a variable is not specified, its default type is $i.

Example 20

tff(mixture of coffee helps some one stay awake, axiom,

! [S: syrup]: ? [P: person] :

help stay awake(P,mixture(coffee,S)) ).
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2.4.2 Semantics

All rules for logical operators, and quantifiers in FOF are also applied in TFF0. Types

are interpreted by non-empty, pairwise disjoint domains. All uninterpreted functions

and predicates are monomorphic.

2.4.3 ATP Systems

Available ATP systems for TFF0 include Princess [3] and SNARK [28]. Princess is

the ATP system used in this research. Princess was developed at Chalmers Uni-

versity, Sweden. Princess was the winner of the CASC-J6 TFA division in 2013.

This ATP is written in Scala, and employs Scala standard libraries, Java standard

libraries, and Cup parser libraries. It can be executed on any recent Java virtual

machine.

2.4.4 Translators

TFF0 problems can be translated to FOF and CNF. There is a satisfiability pre-

serving procedure to translate a TFF0 problems to FOF, and similarly to CNF.

Monotonox2FOF and Monotonox2CNF are variations of Monotonox [5], which is a trans-

lator of many typed first order logic to first order logic. Monotonox is based on three

basic approaches; generating type predicates, generating type functions, and type

erasure. Generating type predicates and type functions preserves the satisfiability of

a problem, but results in very complicated formulae that affect most ATP systems

negatively. Type erasure reduces the complexity, but it does not always preserve
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satisfiability. Only certain types can be erased without changing the satisfiability of

the original problem. Therefore, Monotonox applies the combination of these three

approaches to reduce the complexity of the generated formulae, while preserving the

satisfiablity.

2.5 Typed First-order Form - polymorphic (TFF1)

Typed First-order Form - polymorphic (TFF1) is distinguished from TFF0 by allow-

ing polymorphism over the types of the arguments and return value of functions and

predicates.

2.5.1 Syntax

The syntax described here is the syntax used in the TPTP. Similar to TFF0, the

defined types are $i for individuals and $o for booleans. Any user-defined type is

of type $tType. Monomorphic function types, and predicates are expressed as in

TFF0, applications of monomorphic functions and predicates are the same as TFF0.

Polymorphic function types are expressed using type signatures. In Example 21,

the type definition a polymorphic function type defines the polymorphic function

polymorphic function with M +N arguments, where t01, t02, ..., and tN are user

defined types. The !>[AT1:$tType, AT2:$tType, ..., ATM:$tType, RT:$tType]

is the type signature and expresses that the first M arguments and the return value of

this function are polymorphic. In the axiom a polymorphic function application,

t11, t12, ..., t1M1, t21, t22, ..., t2M2, and rt are user-defined types (M1+M2 = M);
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c1, c2,..., cM2 are constants of types t21, t22, ..., and t2M2; A11, A12, ..., A1M1 are

variables; arg01, arg02,..., argN are of types t01, t02, ..., and tN; and retValue is

a constant of type rt.

Example 21

tff(a polymorphic function type,type,(

polymorphic function:

!>[AT1: $tType, AT2: $tType, ..., ATM: $tType, RT: $tType] :

( ( AT1 * AT * ... * ATM * t01 * t02 * ... *tN ) > RT ) )).

tff(a polymorphic function application,axiom,(

?[A1: t11, A2: t12, ..., A1M1: t1M1] :

retValue = polymorphic function(t11,t12,...,t1M1,t21,t22,...,t2M2,rt,

A11,A12,...,A1M1,

c1,c2,...,cM2,

arg01,arg02,...,argN) )).

Example 22 can be expressed in TFF1 as Example 23. In Example 23, beverage

and syrup are user-defined types, and coffee, vanilla syrup, caramel syrup, and

help people stay awake are monomorphic function types. In this example mixture

is a polymorphic function. The first argument type, and the return type are poly-

morphic, and can be either of the user defined types of beverage or syrup. In the

type definition mixture type, the !>[BeverageOrSyrup:$tType] is the type signa-

ture, and in the axiom mixture of coffee help people stay awake, the polymor-

phic function mixture is used. In mixture(beverage,coffee,S), the first argument,

beverage, expresses the type of the polymorphic type of this function.

Example 22

Axioms = { Coffee is a beverage,
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Vanilla syrup is a syrup,

Caramel syrup is a syrup,

The mixture of a syrup and a beverage is a beverage,

The mixture of a syrup and a syrup is a syrup,

The mixture of coffee and any syrup helps people stay awake }

Conjecture = Caramel vanilla coffee help people stay awake

Example 23

tff(beverage type,type,(

beverage: $tType )).

tff(syrup type,type,(

syrup: $tType )).

tff(coffee type,type,(

coffee: beverage )).

tff(vanilla syrup type,type,(

vanilla syrup: syrup )).

tff(caramel syrup type,type,(

caramel syrup: syrup )).

tff(mixture type,type,(

mixture:

!>[BeverageOrSyrup: $tType] :

( ( BeverageOrSyrup * syrup ) > BeverageOrSyrup ) )).

tff(help people stay awake type,type,(

help people stay awake: beverage > $o )).

tff(mixture of coffee help people stay awake,axiom,(

! [S: syrup] :

help people stay awake(mixture(beverage,coffee,S)) )).

tff(caramel vanilla coffee help people stay awake,conjecture,(
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help people stay awake(

mixture(beverage,coffee,

mixture(syrup,caramel syrup,vanilla syrup))) )).

2.5.2 Semantics

An interpretation of a TFF1 problem consists of a nonempty collection D of nonempty

sets, the domains. The union of all domains is called the universe, U . Interpretation

of the monomorphic terms and atoms are similar to TFF0 using each domain as a

domain of a specific type. Only interpretation for a polymorphic functions and pred-

icates needs to be added. Every possible domain of a polymorphic variables will be

considered. For example, the function map of a polymorphic function f(A1, A2, ..., An)

with n arguments, such that m arguments have free types (m < n), and the return

type is monomorphic, maps all possible n-tuples to an element of the domain that

corresponds to the return type of the function. n −m elements of the n-tuple, cor-

responding to the monomorphic arguments of the function, are selected from their

corresponding domain, and m elements of the n-tuple, corresponding to polymorphic

arguments of the function are selected from all possible domains.

2.5.3 ATP Systems

Available ATP systems for TFF1 include Alt-Ergo [29], which is the ATP system

used in this research.
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2.5.4 Translators

TFF1 problems can be translated to TFF0 and FOF. There is a satisfiability preserv-

ing procedure to translate a TFF1 problems to TFF0, and similarly to FOF. Why3 TFF

and Why3 FOF are the only available translators for translating TFF1 to TFF0 and

FOF, and are used in this research.

2.6 Typed Higher-order Form - monomorphic (THF0)

The Typed Higher-order Form - monomorphic (THF0) is distinguished from TFF0

by addition of a λ-calculus and quantification over functions.

2.6.1 Syntax

The syntax described here is the syntax used in the TPTP. In addition to the FOF

TPTP symbols, THF0 includes types and two symbols @ and ^ (which is the subsi-

tuition for mathematic λ). The @ symbol is used for function application.

Types consists of defined, user-defined, and function types. The defined types

are $i for individuals and $o for booleans. Any user-defined type is of type $tType.

Function types are a or b > c where a is of type any of defined or user-defined

types, and b and c are any of defined, user-defined or function types of the form b >

c. Predicates in THF0 are functions that their return types are type $o. The types

of variables are function types. The axioms and the conjecture in Example 24 can be
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expressed in THF0 as in Example 25. The user-define types are beverage, and syrup,

and the function types are coffee, hot, heat, mix, hot mixture, and cold mixture.

In Example 25 in the axiom hot mixture definition, mix @ B @ S states that

the mix function is applied on the variable B (of type beverage) and S (of type syrup).

The λ-calculus is used for function definition (function abstraction is also a term

used in many papers). In a function definition, the symbol ^ quantifies over local

variable which are used in the body of the function definition. In Example 25, the

axiom cold mixture definition, variables B and S of types beverage and syrup

are local variables which are used in the definition of the function cold mixture.

Example 24

Axioms = { Coffee is a beverage,

Heating a beverage makes the beverage hot,

The mixture of a beverage and a syrup is a beverage,

The hot mixture of a beverage and a syrup is a mixture of

the beverage and the syrup, which is heated,

The cold mixture of a beverage and a syrup is a mixture of

the beverage and the syrup}

Conjecture = There is some mixture of coffee and any syrup which is hot
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Example 25

thf(syrup type,type,(

syrup: $tType )).

thf(beverage type,type,(

beverage: $tType )).

thf(coffee type,type,(

coffee: beverage )).

thf(heat type,type,(

heat: beverage > beverage )).

thf(hot type,type,(

hot: beverage > $o )).

thf(mix type,type,(

mix: beverage > syrup > beverage )).

thf(hot mixture type,type,(

hot mixture: beverage > syrup > beverage )).

thf(cold mixture type,type,(

cold mixture: beverage > syrup > beverage )).

thf(hot mixture definition,definition,

( hot mixture

= ( ^ [B: beverage,S: syrup] :

( heat @ ( mix @ B @ S ) ) ) )).

thf(cold mixture definition,definition,

( cold mixture

= ( ^ [B: beverage,S: syrup] :

( mix @ B @ S ) ) )).

thf(its hot,axiom,(

! [B: beverage] :

( hot @ ( heat @ B ) ) )).

thf(hot coffee,conjecture,(

? [Mixture: beverage > syrup > beverage] :

! [S: syrup] :

? [B: beverage] :
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( ( ( Mixture @ coffee @ S )

= B )

& ( hot @ B ) ) )).

2.6.2 Semantics

Interpretations for THF0 problems are similar to interpretations for TFF0 problems.

The difference is that quantification over functions is allowed, so a variable of a func-

tion type with arity n corresponds to any n-tuple of a domain of an interpretation

mapped to a domain of interpretation. There are two kinds of interpretations com-

monly employed for THF0. Full semantics requires that once the domain of discourse

is satisfied, the variables of function types range over all possible elements of the

correct type (all subsets of the domain, all functions from the domain to itself, etc.).

Thus the specification of a full interpretation is the same as the specification of a

TFF0 interpretation. Henkin semantics, which is essentially multi-sorted first-order

semantics, are used in this research. Henkin semantics requires the interpretation to

specify a separate domain for each type of higher-order variable to range over. Thus,

an interpretation in Henkin semantics includes a domain D, a collection of subsets of

D, a collection of functions from D to D, etc. [30]

2.6.3 ATP Systems

Available ATP systems for THF0 include Isabelle-HOT [31], LEO [32], and Satallax [33].

Isabelle-HOT is the ATP system used in this research.
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2.6.4 Translators

THF0 problems can be translated to TFF0 and FOF. There is a satisfiability pre-

serving procedure to translate a THF0 problems to TFF0, and similarly to FOF.

Isabelle-2TF0 and Isabelle-2FOF are the only available stand-alone translators for

translating THF0 to TFF0 and FOF, and are used in this research. Isabelle-2FOF

can also be used for translating TFF0 to FOF.
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Saffron, a Translator for CNF to
DL

As explained in Chapter 1, the goal of this research is to investigate the possible ways

of increasing the efficiency of solving problems using available ATPs and translators.

A problem expressed in a logical form can be either solved using an ATP for that

logical form, or if a translator is available, it can be translated to a less expressive

logical form. If it is translated to a less expressive logical form, again the same

two options are available. The experiment described in Chapter 4 was designed

and carried out to compare different possible combinations of available ATPs and

translators to solve a problem. No CNF to DL translator was available when this

research was started. In this chapter, a CNF to DL translation procedure, as well as

its implementation as Saffron, is described. Saffron is implemented in Prolog. The

input problem is in CNF in the TPTP syntax, and the output of the translation is

DL in RDF syntax.

35
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3.1 Preparing a CNF Problem for Translation

Problems with only constants, and predicates with only one or two arguments, can be

translated directly to DL. Constants, predicates with one argument, and predicates

with two arguments, in CNF correspond to individuals, classes, and roles that are

the building blocks of DL. Since these problems have no functions with arity greater

than zero, they are EPR (their Herbrand Universe is finite). Predicates with arity

greater than two, and functions with arity greater than zero cannot be translated

directly to DL because there is no DL syntax for such predicates and functions. In

this research, an effort was made to find a way to transform problems with predicates

with arity greater than two or functions with arity greater than zero to problems with

only predicates with arity one or two. However, these efforts failed for the following

reasons. There is no known approach for replacing a predicate with arity greater

than two with predicates with arity less than or equal to two. However, a function

replacement approach for CNF problems is presented in [34]. This approach was

considered for EPR problems with functions, but no variables or equality. In this

approach a function with arity n (n > 0) is replaced with a predicate with arity

n + 1. This approach was considered for replacing the functions with arity one with

predicates with arity two. After replacing the functions with predicates, axioms of

totality must be added to make the theorem proving techniques such as resolution

complete. According to the axiom of totality for a function with arity n, the function

should map every n-tuple of elements of the domain of an interpretation, to some

element of the domain of the interpretation. Expressing the axiom of totality forces
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the use of an existential quantifier, so the axioms of totality are first expressed in

FOF, and then transformed to CNF. Transforming an existential quantifier to CNF

introduces Skolem functions. Since the existential quantifier quantifies over the return

value of a function with arity n, the arity of the introduced Skolem function is also n.

As the goal of this process is to remove all the functions with arity greater than zero,

this defeats the goal. However, if the domain of an interpretation has d elements

the axioms of d-totality are sufficient. Example 26 shows the axioms of d-totality

where p is a replacement for function f with arity one, and 1,2,...,d are the domain

elements. Since the EPR problems are interesting for translation to DL, and the

Herbrand Universe of an EPR problem is finite, the axioms of d-totality can be used.

Example 26

p(X,1)|p(X,2)|...|p(X,d)

In addition to axioms of totality, the axioms of well-definedness also must be added

to complete the function replacement. According to the axiom of well-definedness of

a function with arity n, the function maps every n-tuple of elements of the domain

of an interpretation to at most one element of the domain of the domain of interpre-

tation. Example 27 shows the axiom of well-definedness where p f is a replacement

for function f with arity one. Axioms of well-definedness are not translatable to DL

because there is no DL syntax for them.

Example 27

∼p f(X,Y1)|∼p f(X,Y2)|X1=X2
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In Example 28, function f in the axiom predicate applied on function is re-

placed with the predicate p f in the axiom replacing f with p. The axiom 3 totality of f

is the 3-totality axiom for function f, where e1, e2, and e3 are the elements of the

Herbrand Universe. The axiom well definedness of f is the well-definedness axiom

for function f.

Example 28

cnf(predicate applied on function,axiom,

( q(f(e1)) )).

cnf(replacing f with p,axiom,

( p f(X,Y) | q(Y) )).

cnf(3 totality of f,axiom,

( p f(X,e1)

| p f(X,e2)

| p f(X,e3) )).

cnf(well definedness of f,axiom,

( p f(X,Y1)

| p f(X,Y2)

| Y1 = Y2 )).

3.2 Translation Procedure

As explained in Chapter 1, the main requirement of the translation from CNF to DL

is to preserve the satisfiability of the CNF problems, and hopefully the unsatisfiability

of them. Translation from CNF to DL is done by considering the intended semantics

of each clause. For example, the CNF clause in Example 29 includes two unary

predicates, p and q, that correspondingly introduce two DL classes P and Q. This

clause expresses the fact that for every element e of an interpretation domain, if p(e)
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then q(e). The corresponding DL axiom of this clause defines a characteristic of the

class P, which is that the class P is a subclass of the class Q.

Example 29

∼p(X)|q(X)

Every DL axiom defines a characteristic of an individual, a class, or a role, or

describes the default class Thing. For every constant appearing in a CNF problem, an

individual with the same name is defined in DL. The characteristics of individuals that

are covered in this translation are an individual belonging to a class, an individual

not belonging to a class, an individual belonging to the union of classes and the

complements of classes, and an individual being in a binary relationship with another

individual. The equality or negative equality between two constants in a CNF clause

has to be taken care of in a different way to other binary predicates applied to

two constants. The corresponding DL axioms of equality between two individuals

or inequality between two individuals include “same individual as” and “different

individual as” notations. Table 3.1 illustrates CNF clauses and their corresponding

DL characteristics of individuals.

For every unary predicate appearing in a CNF problem, a class with the same

name and the capitalized first letter is defined in DL. The characteristics of classes

that are covered in this translation are a class being a subclass of another class, and a

class being equivalent to class Thing. Table 3.2 illustrates CNF clauses and their cor-

responding DL characteristics of classes. Subclass and equivalency characteristics are

major characteristics of a DL class. The subclass characteristic implicitly covers the
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Table 3.1: CNF Clauses and Equivalent Individual DL Characteristics
CNF clause DL Equivalent

p(a) Individual a belongs to the class P

∼p(a) Individual a does not belongs to the class P

p1(a)|p2(a)|...|pN(a)| Individual a belongs to the union of classes P1, P2,
∼q1(a)|∼q2(a)|...|∼qM(a) ..., PN, and the complements of classes Q1, Q2, ...,
N ≥ 0, M ≥ 0, and M + N ≥ 2 QM

r(a,b) Individual a is in the r relationship with the indi-
vidual b

∼r(a,b) Individual a is not in the r relationship with the
individual b

a = b a is a same individual as b

a != b a is a different individual to b

equivalency characteristic because the equivalency between two classes is expressed by

two CNF clauses, each of which expresses that each of the classes is a subclass of the

other. A class being equivalent to the union of classes and the complement of classes

can be expressed by expressing the subclass characteristic and some description of

the default class Thing, which will be explained later in this section. For example, if

class A is equivalent to the union of classes B1, B2, .., and BN, and the complements

of C1, C2, .., and CM(N ≥ 0, M ≥ 0, and N + M ≥ 2). This can be expressed a the

CNF clauses in Example 30. The clauses 30.b to 30.d are translated to DL axioms ex-

pressing the subclass characteristic of the classes B1, B2, .., and BN. The clauses 30.a

and 30.e to 30.g are translated to DL axioms expressing a description of the class

Thing, which will be explained later in this section. A class being equivalent to the

intersection of classes and the complement of classes can be similarly expressed by

expressing the subclass characteristic and some description of the default class Thing.

Example 30

30.a. ∼a(X)|b1(X)|b2(X)|...|bN(X)|∼c1(X)|∼c2(X)|...|∼cM(X)
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30.b. ∼b1(X)|a(X)

30.c. ∼b2(X)|a(X)

...

30.d. ∼bN(X)|a(X)

30.e. c1(X)|a(X)

30.f. c2(X)|a(X)

...

30.g. cM(X)|a(X)

Table 3.2: CNF Clauses and Equivalent Class DL Characteristics
CNF clause DL Equivalent

∼p(X)|q(X) Class P is a subclass of class Q

p(X) Class P is equivalent to class Thing

For every binary predicate appearing in a CNF problem, a role with the same

name is defined in DL. The role characteristics that are covered in this translation

are reflexivity, irreflexivity, symmetry, asymmetry, transitivity, and a role being the

inverse of another role. Table 3.3 illustrates CNF clauses and their corresponding DL

characteristics of roles.

Table 3.3: CNF Clauses and Equivalent Role DL Characteristics
CNF clause DL Equivalent

r(X,X) r is a reflexive relation

∼r(X,X) r is an irreflexive relation

∼r(X,Y)|r(Y,X) r is a symmetric relation

∼r(X,Y)|∼r(Y,X) r is an asymmetric relation

∼r(X,Y)|∼r(Y,Z)|r(X,Z) r is a transitive relation

∼r(X,Y)|s(Y,X) r is the inverse of s
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Some CNF clauses describe the default class Thing, so they are expressed in DL as

a restriction on, or a description of the class Thing. Table 3.4 illustrates CNF clauses

and their corresponding DL axioms that describe the class Thing. In Example 30, the

clauses 30.a and 30.e to 30.g are translated to DL axioms using the rule represented

in the second row of Table 3.4.

Table 3.4: CNF Clauses and Equivalent Thing Class Descriptions
CNF clause DL Equivalent

∼p(X) Class Thing is equivalent to the complement of the
class P

p1(X)|p2(X)|...|pN(X)|

∼q1(X)|∼q2(X)|...|∼qM(X)
(N ≥ 0, M ≥ 0, and M +N ≥ 2)

All individuals belong to the union of classes P1,
P2, ..., and PN, and the complements of classes Q1,
Q2, ..., and QM

r(X,a1)|r(X,a2)|...|r(X,aN)|

∼r(X,b1)|∼r(X,b2)|...|
∼r(X,bM) (N ≥ 0, M ≥ 0, and
M + N ≥ 1)

All individuals have r relationship with a1, a2, ...,
or aN, or do not have r relationship with b1, b2, ...,
or bM

p1(X)|p2(X)|...|pI(X)|

∼q1(X)|∼q2(X)|...|∼qJ(X)
r(X,a1)|r(X,a2)|...|r(x,aK)|

∼r(X,b1)|∼r(X,b2)|...|
∼r(x,bL) (I ≥ 0, J ≥ 0, K ≥ 0,
L ≥ 0, I+J ≥ 1, and K+L ≥ 1)

All individuals belong to the union of classes P1,
P2, ..., and PI, and the complements of classes Q1,
Q2, ..., and QJ. Also they have r relationship with
a1, a2, ..., or aK, or they do not have r relationship
with b1, b2, ..., or bL

In RDF syntax, each individual, each class, each role, and class Thing are ex-

pressed as an RDF tag, with their characteristics (if any exist) as sub-tags. When

the clause-by-clause translation of the whole problem is completed, for each individ-

ual, each class, each role, and class Thing, all the characteristics, that were found

during the translation are gathered and combined into in an RDF tag.

In a problem there might be a CNF clause that cannot be translated to a DL

axiom, because either it has no equivalent DL axiom, or the translation rules do not

support its translation. Thus a problem might be fully or partially translated with
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these rules. However, the unsatisfiability of a partially translated problem might be

preserved, because an unsatisfiable subset of the clauses has been translated. The

experiment in Section 3.4 shows how successful this translator is in preserving the

unsatisfiability of partially translated problems.

The CNF problem in Example 31 can be translated to DL and the result of the

translation, without the header and footer of the .owl file, is in Eaxmple 32. The CNF

problem is unsatisfiable because the negated conjecture moein is sibling of negin

is in contradiction with two axioms negin is sibling of moein and sibling is

symmetric. The negated conjecture ahmad is dad of youngest child is also in con-

tradiction with the axioms negin is child of ahmad, negin is youngest child,

and dad is reverse of child. It is hoped that the DL ontology resulted from the

translation is inconsistent. Figure 3.1 is the result of HermiTT reasoning on the DL

problem. This shows that the the DL ontology is inconsistent and the reasons for the

inconsistency are explained.

Example 31

cnf(moein is a person,axiom,

( person(moein) )).

cnf(negin is a female,axiom,

female(negin) )).

cnf(ahmad is a person,axiom,

person(ahmad) )).

cnf(ahmad is not a female,axiom,

female(ahmad) )).

cnf(negin is sibling of moein,axiom,

sibling(negin,moein) )).
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cnf(ahmad is dad of moein,axiom,

dad(ahmad,moein) )).

cnf(negin is child of ahmad,axiom,

child(negin,ahmad) )).

cnf(negin and moein are different,axiom,

negin != moein )).

cnf(negin is youngest child,axiom,

negin = youngest child )).

cnf(sibling is symmetric,axiom,

sibling(X,Y)

| sibling(Y,X) )).

cnf(dad is reverse of child,axiom,

dad(X,Y)

| child(Y,X) )).

cnf(female is subclass of person,axiom,

female(X)

| person(X) )).

cnf(moein is sibling of negin,negated conjecture,

sibling(moein,negin) )).

cnf(ahmad is dad of youngest child,negated conjecture,

dad(ahmad,youngest child) )).

Example 32

<owl:NamedIndividual rdf:about="&family-ontology;ahmad">

<family-ontology:dad rdf:resource="&family-ontology;moein"/>

<rdf:type rdf:resource="&family-ontology;Person"/>

<rdf:type>

<owl:Class>

<owl:complementOf rdf:resource="&family-ontology;Female"/>

</owl:Class>

</rdf:type>

</owl:NamedIndividual>

<owl:ObjectProperty rdf:about="&family-ontology;dad">
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<owl:inverseOf rdf:resource="&family-ontology;child"/>

</owl:ObjectProperty>

<rdf:Description>

<rdf:type rdf:resource="&owl;AllDifferent"/>

<owl:distinctMembers rdf:parseType="Collection">

<rdf:Description rdf:about="&family-ontology;negin"/>

<rdf:Description rdf:about="&family-ontology;moein"/>

</owl:distinctMembers>

</rdf:Description>

<rdf:Description>

<rdf:type rdf:resource="&owl;NegativePropertyAssertion"/>

<owl:targetIndividual rdf:resource="&family-ontology;negin"/>

<owl:assertionProperty rdf:resource="&family-ontology;sibling"/>

<owl:sourceIndividual rdf:resource="&family-ontology;moein"/>

</rdf:Description>

<rdf:Description>

<rdf:type rdf:resource="&owl;NegativePropertyAssertion"/>

<owl:targetIndividual rdf:resource="&family-ontology;youngest child"/>

<owl:assertionProperty rdf:resource="&family-ontology;dad"/>

<owl:sourceIndividual rdf:resource="&family-ontology;ahmad"/>

</rdf:Description>

<owl:Class rdf:about="&family-ontology;Female">

<rdfs:subClassOf rdf:resource="&family-ontology;Person"/>

</owl:Class>

<owl:NamedIndividual rdf:about="&family-ontology;moein">

<rdf:type rdf:resource="&family-ontology;Person"/>

</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="&family-ontology;negin">

<family-ontology:child rdf:resource="&family-ontology;ahmad"/>

<family-ontology:sibling rdf:resource="&family-ontology;moein"/>

<owl:sameAs rdf:resource="&family-ontology;youngest child"/>

<rdf:type rdf:resource="&family-ontology;Female"/>

</owl:NamedIndividual>

<owl:ObjectProperty rdf:about="&family-ontology;sibling">

<rdf:type rdf:resource="&owl;SymmetricProperty"/>

</owl:ObjectProperty>
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Figure 3.1: The Output of HermiT

3.3 Implementation of Saffron

Saffron consists of three translation related modules, and several support modules

that are responsible for reading the input problem and saving the clauses in a process-

able format. translation, gather, and generate-output are the three translation

related modules. The translation module tries to translate each CNF clause to a

DL axiom. The gather module gathers all the characteristics of each individual, class

and role, and descriptions of class Thing. Then it passes the collated information to

the generate-output module to generate the output file in RDF.

3.3.1 The Translation Module

For every CNF clause, the translation module checks if there is a possible trans-

lation to DL. If it can translate the clause, it passes the resultant DL axiom to the
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gather module, and proceeds with the rest of the clauses. Otherwise, it keeps the

clause as an untranslated clause, and proceeds with the rest of the clauses.

To check all the possible translations of a CNF clause, the translator module

first needs to determine the form of the clause. For example, both of the clauses in

Example 33 expresses the fact that the binary predicate r is symmetric, and when

translated to DL, the role r has the symmetric characteristic.

Example 33

∼r(X,Y)|r(Y,X)

r(X,Y)|∼r(Y,X)

To determine the form of the clause, the translation module extracts all the

constants, unary predicates, and binary predicates, and variables from the clause

being translated, and depending on these sets, and the polarities of the literals de-

termines if the clause has any of the translatable forms. Table 3.5 shows the possible

CNF forms and the corresponding DL axioms, depending on the sets of constants,

unary predicates, binary predicates, and variables in a CNF clause. For example, all

the clauses in Example 34 share the same sets of constants, unary predicates, binary

predicates, and variables. However, the clauses 34.a to 34.d are translated to different

DL axioms, and the clause 34.e is not translatable.

Example 34

34.a. r(a,b)

34.b. ∼r(a,b)
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34.c. r(b,a)

34.d. ∼r(b,a)

34.e. r(a,a)|r(b,b)

set of constants = {a,b}

set of unary predicates = {}

set of binary predicates = {r}

set of variables = {}

3.3.2 The Gather and Generate-output Modules

The characteristics of a specific individual, class or role, and the description of the

class Thing are distributed in the CNF problem. Since the translation is done clause

by clause, the output of the translation module is a set of statements. Each statement

describes a characteristic of an individual, a characteristic of a class, a characteristic of

a role, and the class Thing. The gather module of Saffron collects all the statements

about each individual, each class, each role or class Thing into separate sets. The

gather module then passes the sets to the generate-output module to generate the

RDF format of the DL problem. The generate-output module expresses each set

as an RDF tag, possibly with sub-tags. All the RDF tags are output to a file with

an .owl file extension.
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Table 3.5: CNF and DL Equivalent Axioms
CNF clauses Set of Indi-

viduals in the
CNF clause

Set of
Classes
in the CNF
clause

Set of Roles
in the CNF
clause

Set of Vari-
ables in the
CNF clause

DL axioms

p(a) {a} {p} {} {} Individual a belongs to the
class P

∼p(a) Individual a does not be-
longs to the class P

p1(a)|p2(a)|...|pN(a)| {a} {p1,p2,...,pN, {} {} Individual a belongs to the
union of classes P1, P2,

∼q1(a)|∼q2(a)|...|∼qM(a) q1,q2,...,qM ... and PN, and the comple-
ment of class Q1, the

—N ≥ 0,
M ≥ 0, and
M + N ≥ 2}

complement of class Q2,
... and the complement of
class QM

r(a,b) {a,b} {} {r} {} Individual a is in the r re-
lationship with the indi-
vidual b

∼r(a,b) Individual a is not in the r
relationship with the indi-
vidual b

a = b {a,b} {} {=} {} a is a same individual as b
a != b a is a different individual

as b
∼p(X)|q(X) {} {p,q} {} {X} Class P is a subclass of

class Q
p(X) {} {p} {} {X} Class P is a equivalent to

class Thing

∼p(X) Class Thing is equivalent to
the complement of class P

p1(X)|p2(X)|...|pN(X)|

∼q1(X)|∼q2(X)|...|∼qM(X)
(N ≥ 0, M ≥ 0, and M+N ≥ 2)

{} {p1,p2,...,pN,
q1,q2,...,qM—
N ≥ 0,
M ≥ 0, and
M + N ≥ 2}

{} {X} All individuals belong to
the union of classes P1, P2,
..., and PN, and the comple-
ments of classes Q1, Q2, ...,
and QM

r(X,a1)|r(X,a2)|...|r(X,aN)|

∼r(X,b1)|∼r(X,b2)|...|∼r(X,bM)
{a1,a2,...,aN,
b1,b2,...,bM—
N ≥ 0,
M ≥ 0, and
M + N ≥ 1}

{} {r} {X} All individuals have r rela-
tionship with a1, a2, ..., or
aN, or do not have r rela-
tionship with b1, b2, ..., or
bM

p1(X)|p2(X)|...|pI(X)|

∼q1(X)|∼q2(X)|...|∼qJ(X)
r(X,a1)|r(X,a2)|...|r(x,aK)|

∼r(X,b1)|∼r(X,b2)|...|
∼r(x,bL)

{a1,a2,...,aK,
b1,b2,....,bL—
K ≥ 0,
L ≥ 0, and
K + L ≥ 1}

{p1,p2,...,pI,
q1,q2,...,qJ—
I ≥ 0,
J ≥ 0, and
I + J ≥ 1}

{r} {X} All individuals belong to
the union of classes P1, P2,
..., and PI, and the comple-
ments of classes Q1, Q2, ...,
and QJ. Also they have r re-
lationship with a1, a2, ...,
or aK, or they do not have
r relationship with b1, b2,
..., or bL

r(X,X) {} { } {r} {X} r is a reflexive relation
∼r(X,X) r is an irreflexive relation
∼r(X,Y)|r(Y,X) {} {} {r} {X,Y} r is a symmetric relation
∼r(X,Y)|∼r(Y,X) r is an asymmetric relation
∼r(X,Y)|∼r(Y,Z)|r(X,Z) {} {} {r} {X,Y,Z} r is a transitive relation
∼r(X,Y)|s(Y,X) {} {} {r,s} {X,Y} r is the inverse of s

3.4 Testing the Translator

Example satisfiable CNF problems has been created that only include the translatable

clauses by the current version of Saffron. Saffron could translate all the clauses of

these problems, the way it was expected, and the satisfiablity of all the translated

problems were confirmed by Hermit. To check if Saffron is successful in translating

the unsatisfiable subset of clauses of an unsatisfiable CNF problems, it has been

tested over 262 unsatisfiable CNF TPTP problems that have no functions with arity
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more than zero, and no predicates with arity more than two. All these problems

are unsatisfiable. For each problem, the result of the translation is an OWL file in

RDF syntax, which is either a full or a partial translation of the CNF problem. It

is hoped that the translation preserves their unsatisfiability for partially translated

problems. All the output files are passed to HermiT, a DL reasoner, to check if the

unsatisfiability property is preserved.

By the available translator features, 10 problems are totally translated, and after

running the HermiT reasoner over these problems, the unsatisfiability of 8 of these

is confirmed by HermiT, and HermiT did not stop reasoning on the other 2 problems

in 300 seconds. Of the remaining 252 problems, which are partially translated, the

unsatisfiability of 61 problems is confirmed by HermiT , and HermiT did not time

out on any of the problems. On average, 78% of the clauses of each of these 61

problems are successfully translated by the available features of Saffron. Thus, the

unsatisfiability of 69 problems out of 262 translated problems is preserved. Later, in

Chapter 4 the result of translating a CNF problem with only constants and predicates

with arity one and two using Saffron, and solving using HermiT versus using iProver,

which is the well tuned ATP system for EPR problems are compared. Table 3.6 and

Table 3.7 shows all these problems. The last two columns show the number of clauses

successfully translated to DL axioms and the percentage of successfully translated

clauses over all clauses. On average, 37% of each of the 262 CNF problems were

translated. Problems 67 and 71 are the two problems that are 100% translated but

their unsatisfiability are not confirmed.
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Table 3.6: Unsatisfiability Preserved CNF problems
# Problem Name Number of

Clauses
Number of
Translated
Clauses

Percentage

1 HWV039-1 869 804 92
2 HWV039-2 865 801 92
3 HWV040-1 878 811 92
4 HWV040-2 874 808 92
5 HWV041-1 889 822 92
6 HWV041-2 885 819 92
7 HWV042-1 889 822 92
8 HWV042-2 885 819 92
9 HWV043-1 950 883 92
10 HWV043-2 947 881 93
11 HWV044-1 950 883 92
12 HWV044-2 947 881 93
13 HWV045-1 885 809 91
14 HWV045-2 881 806 91
15 HWV046-1 885 809 91
16 HWV046-2 881 806 91
17 HWV047-1 989 910 92
18 HWV047-2 985 907 92
19 HWV048-1 989 910 92
20 HWV048-2 985 907 92
21 HWV049-1 1022 915 89
22 HWV049-2 989 888 89
23 HWV050-1 828 769 92
24 HWV050-2 828 766 92
25 HWV051-1 828 769 92
26 HWV051-2 828 766 92
27 KRS004-1 4 4 100
28 PUZ002-1 12 12 100
29 PUZ029-1 15 15 100
30 PUZ035-1 15 7 46
31 PUZ035-2 16 8 50
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Table 3.7: Unsatisfiability Preserved CNF problems-Continued
# Problem Name Number of

Clauses
Number of
Translated
Clauses

Percentage

32 SWV421-1.060 140 106 75
33 SWV421-1.065 145 111 76
34 SWV421-1.100 180 146 81
35 SWV421-1.105 185 151 81
36 SWV421-1.200 280 246 87
37 SWV421-1.205 285 251 88
38 SWV421-1.300 380 346 91
39 SWV421-1.305 385 351 91
40 SWV421-1.360 440 406 92
41 SWV421-1.365 445 411 92
42 SWV421-1.400 480 446 92
43 SWV421-1.405 485 451 92
44 SWV421-1.460 540 506 93
45 SWV421-1.465 545 511 93
46 SWV421-1.500 580 546 94
47 SWV421-1.505 585 551 94
48 SWV422-1.060 140 106 75
49 SWV422-1.065 145 111 76
50 SWV422-1.100 180 146 81
51 SWV422-1.105 185 151 81
52 SWV422-1.200 280 246 87
53 SWV422-1.205 285 251 88
54 SWV422-1.300 380 346 91
55 SWV422-1.305 385 351 91
56 SWV422-1.360 440 406 92
57 SWV422-1.365 445 411 92
58 SWV422-1.400 480 446 92
59 SWV422-1.405 485 451 92
60 SWV422-1.460 540 506 93
61 SWV422-1.465 545 511 93
62 SWV422-1.500 580 546 94
63 SWV422-1.505 585 551 94
64 SYN060-1 7 7 100
65 SYN061-1 6 6 100
66 SYN062-1 7 7 100
67 SYN072-1 5 5 100
68 SYN096-1.008 65 65 100
69 SYN099-1.003 50 49 98
70 SYN100-1.005 82 82 100
71 SYN914-1.1 56 56 100



www.manaraa.com

Chapter 4

Experiments

There are different ways for solving a real-world problem using any of the logics,

Propositional Logic, Description Logic (DL), First Order Form (FOF), Conjunctive

Normal Form (CNF), Effectively Propositional Form(EPR), Typed First order Form-

monomorphic (TFF0), Typed First order Form-polymorphic (TFF1), Typed Higher

order Form-monomorphic (THF0). A real-world problem can be first expressed in

a logic. It can be then solved in that logic using an ATP system for that logic, or

translated to a less expressive logic if possible. If it is translated to a less expressive

logic, again the same two options of translating down (if possible) to another less

expressive logic, or solving using an ATP system for that logic are available. In

Figure 1.1 in Chapter 1, different paths for a logic problem, from the original logic in

which it is expressed to an ATP system by which it is solved, is illustrated.

An experiment has been done to compare the reasoning processes through all

available paths for problems in different logics (THF0, TFF1, TFF0, FOF and CNF)

in terms of efficiency. Efficiency of the reasoning process through a path is determined

53
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by the number of problems solved over the all sample problems, i.e., the chance of

success in translation and solving the problem, and the average time of the whole rea-

soning process through the path, including translations and solving, of all problems.

The experiment was done on a machine with the following specifications.

NumberOfCPUs : 4

CPUModel: Intel(R) Xeon(TM) CPU 2.80GHz

RAMPerCPU: 756MB

OS: Linux 2.6.32.26-175.fc12.i686.PAE

Annotations. A path titled logic1 · logic2 · . . . · logicn with a chain of translators

and an ATP system translator1 > translator2 > . . . > translatorn−1 > atpn implies

that the logic problem is originally in logic logic1, and for 1 ≤ i ≤ n − 1, problems

in the logic logici is translated to the logic logici+1 using the translator translatori,

and eventually the problem in the logic logicn is solved using its ATP system atpn.

4.1 Conjunctive Normal Form

Some CNF problems can be translated to DL, and if they are EPR they can be

translated to Propositional Logic. The translation of a CNF problem to DL might

not be complete because there might be clauses with a function with arity greater

than zero or a predicate with arity greater than two. It might not be possible to

translate some clauses with only constants and predicates with arity one or two to

DL because there might not be equivalent DL semantics for the clause.

The selected ATP system for solving CNF problems is Vampire-3.0. If a CNF
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problem is EPR, the selected ATP system is iProver-1.0. The translator for trans-

lating CNF to DL is Saffron-1.0, and the translator for EPR to Propositional Logic

is EGround-1.8. The ATP system for solving DL problems is HermiT-1.3.8, and the

ATP system for solving Propositional Logic problems is MiniSAT-2.2.0.

Two experiments have been carried out over two different sets of sample problems

to compare the possible paths for CNF problems. One set is the sample problems

from the CASC-J6 CNF division. The other set is the set of CNF problems that are

used in Chapter 2.6.4 to test Saffron, which include only constants and predicates

with arity one or two.

Table 4.1 shows the result of the experiment on the first set of CNF problems. The

column Successful shows the number of problems that are completely solved, and the

percentage over the total number of problems. The column Average time shows the

average time of the successfully solved problems. The columns Timed-out and Failed

show the number of problems that a stage of their reasoning process is timed-out and

failed, and the percentage of such problems over the total number of problems.

Table 4.1: Results of Comparing Paths from CNF over 150 Problems from CASC-J6
Path Tools Successful Average

time
Timed-out Failed

CNF Vampire-3.0 123 (82%) 2.241 27 (18%) 0 (0%)
CNF.DL Saffron-1.0 >

HermiT-1.3.8
0 (0%) 0.0 1 (0%) 149 (99%)

None of these problems are EPR, so none of them were translated to Proposi-

tional Logic. The translation of all of these CNF problems to DL were all partial,

with an average of only 17% of the clauses translated to DL. This incompleteness is

presumed to be the reason why none of the resultant DL problems could be shown
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to be unsatisfiable by HermiT, and further work to extend the scope of the translator

is necessary for this kind of problem.

Table 4.2 shows the result of the experiment over the second set of problems.

Since all these problems are EPR, iProver-1.0 is used to solve the problems. As

illustrated in this table, iProver-1.0 can solve more problems than EGround-1.8 >

MiniSAT-2.2.0, and EGround-1.8 > MiniSAT-2.2.0 can solve more problems than

Saffron-1.0 > HermiT-1.3.8.

Table 4.2: Results of Comparing Paths from CNF over 262 Problems with only
constants and predicates with arity less than two

Path Tools Successful Average
time

Timed-out Failed

CNF iProver-1.0 129 (49%) 2.199 49 (18%) 84 (32%)
CNF.Prop EGround-1.8 >

MiniSAT-2.2.0
102 (38%) 0.0020 97 (37%) 63 (24%)

CNF.DL Saffron-1.0 >
HermiT-1.3.8

69 (26%) 0.079 0 (0%) 193 (73%)

There are 11 problems among these 262 problems that can be solved through

all the three paths. Table 4.3 illustrates the average on the common successfully

solved problems, and the number of the problems that are exclusively solved through

each path that cannot be solved by others. It is interesting that although the num-

ber of the problems that Saffron-1.0 > HermiT-1.3.8 can solve is less than the

number of problems that iProver-1.0 or EGround-1.8 > MiniSAT-2.2.0 can solve,

Saffron-1.0 > HermiT-1.3.8 can solve 46 problems that cannot be solved through

the two other paths.

When more than one CPU is available, different approaches can be executed

on one problem simultaneously to increase the chance of the problem being solved.
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Therefore, with N processors, N paths that provide the maximum number of problem

solved in this experiment are chosen. Table 4.4 shows which path is the best to be

picked as an additional path to maximize the number of problems solved. Out of

262 sample problems in CNF, 175 problems can be solved through all paths together.

The two paths shown in Table 4.4 all together can solve all of these problems, so

adding more than two CPUs does not increase the chance of a problem being solved.

The number of exclusive problems at each row is the number of problems that can be

solved only by the path at each row comparing to all other possible paths up to that

row. The total solved is the total number of problems that can be solved by all the

N . The average time for N processors is the average of minimum computation time

among all N paths for every problem.

Table 4.3: Common and Exclusive Solved Problems Through Paths from CNF
Path Number of Exclu-

sive Problems
Average Time Over
Common Problems

CNF.DL 46 0.010
CNF 15 0.001
CNF.Prop 0 0.000

Table 4.4: Paths from CNF in Parallel
CPUs Path Exclusive Problems Total Solved Average Time

1 CNF 129 129 2.182
2 CNF.DL 46 175 0.526

4.2 First Order Form (FOF)

FOF problems can be translated to CNF. If a problem is translated to CNF then it

can be translated to DL or Propositional Logic, in the way explained in Section 4.1.
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The selected ATP system for solving FOF problems is Vampire-3.0. The trans-

lator for translating FOF to CNF is ECNF-1.8.

The sample problems in FOF are sample problems for the CSC-J6 ATP System

Competition. Table 4.5 shows the result of the experiment on this set of FOF prob-

lems. If the problem translated to CNF is EPR then iProver-1.0 is used as the ATP

system. Otherwise, Vampire-3.0 is used. Table 4.5 shows the combined results for

EPR and non-EPR translated problems to CNF. The column Total shows the number

of available test problems for each path. Table 4.6 shows that among the problems

that are translated to CNF, how many are EPR.

Table 4.5: Results of Comparing Paths from FOF
Paths Tools Total Successful Average

time
Timed-out Failed

FOF Vampire-3.0 500 396 (79%) 3.05 104 (20%) 0 (0%)
FOF.CNF ECNF-1.8 >

(Vampire-3.0
or iProver-1.0)

500 294 (58%) 1.505 157 (31%) 49 (9%)

FOF.CNF.DL ECNF-1.8 >
Saffron-1.0 >
HermiT-1.3.8

500 20 (4%) 0.467 93 (18%) 387
(77%)

FOF.CNF.Prop ECNF-1.8 >
EGround-1.8 >
MiniSAT-2.2.0

33 13 (39%) 0.073 3 (9%) 17 (51%)

Table 4.6: Results of Comparing Paths from FOF to CNF
Paths Tools Total Successful Average

time
Timed-out Failed

FOF.EPR ECNF-1.8 >
iProver-1.0

468 273 (58%) 1.309 147 (31%) 48 (10%)

FOF.CNF ECNF-1.8 >
Vampire-3.0

32 21 (65%) 4.242 10 (31%) 1 (3%)
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Table 4.7 shows that by increasing the number of CPUs, which path is the best to

be picked as an additional path to maximize the number of problems solved. Out of

500 sample problems in CNF, 425 problems can be solved through all paths together.

The three paths shown in Table 4.7 all together can solve all of these problems, so

adding the path than three CPUs will not increase the chance of a problem being

solved. Among the 16 problems that are exclusively solved by the path FOF.CNF,

13 problems are EPR which are solved using iProver-1.0

Table 4.7: Paths from FOF in Parallel
CPUs Path Exclusive Problems Total Solved Average Time

1 FOF 396 396 3.042
2 FOF.CNF 16 412 2.366
3 FOF.CNF.DL 13 425 2.095

4.3 Typed First-order Form - monomorphic

TFF0 problems can be translated to FOF or CNF. If a problem is translated to FOF,

then it can be translated to CNF in the way explained in Section 4.2. If a problem

is translated to CNF, then it can be translated to DL or Propositional Logic, in the

way explained in Section 4.1.

The selected ATP system for solving TFF0 problems is Princess-120604. The

translator for translating TFF0 to FOF is Monotonox-2FOF-e3c1636, and the trans-

lator for translating TFF0 to CNF is Monotonox-2CNF-e3c1636.
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The sample problems in TFF0 are all the TFF0 problems in the TPTP that

were available when this experiment was initiated. Table 4.8 shows the result of the

experiment on this set of TFF0 problems.

Table 4.9 shows that by increasing the number of CPUs, which path is the best

being picked as an additional path to maximize the number of problems solved. Out

of 97 sample problems in CNF, 44 problems can be solved through all paths together.

The four paths shown in Table 4.9 all together can solve all of these problems, so

adding more than four CPUs will not increase the chance of a problem to be solved.

4.4 Typed First-order From - polymorphic

TFF1 problems can be translated to TFF0 or FOF. If a problem is translated to

TFF0, then it can be translated to FOF or CNF in the way explained in Section 4.3.

If a problem is translated to FOF, then it can be translated to CNF, in the way

explained in Section 4.2.

The selected ATP system for solving TFF1 problems is Alt-Ergo-0.94. The

translator for translating TFF1 to TFF0 is Why3-TFF0-0.71, and the translator for

translating TFF1 to FOF is Why3-FOF-0.71.

The sample problems in TFF1 are all the Polymorphic typed First-order Form

(PFF) problems in the TPTP that were available when the experiment was initiated.

Table 4.10 shows the result of the experiment on this set of TFF0 problems. If a

problem is eventually translated to CNF, and it is EPR, then it can be translated to

Propositional Logic, but none of the CNF problems are EPR.
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Table 4.11 shows that by increasing the number of processors which path is the

best to be picked as an additional path to the path set to maximize the number of

problems solved. Out of the 987 sample problems, 385 problems can be solved by all

alternatives together. The four paths shown in Table 4.11 all together can solve all

of these problems, so adding more than four CPUs will not increase the chance of a

problem being solved.

4.5 Typed Higher-order From - monomorphic

THF0 problems can be translated to TFF0 and FOF. If a problem is translated to

TFF0 then it can be translated to FOF or CNF, in the way explained in Section 4.3.

If a problem is translated to FOF then it can be translated to CNF, in the way

explained in Section 4.2.

The selected ATP system for solving THF0 problems is Isabelle-HOT-2013. The

translators for translating THF0 to TFF0 and THF0 to FOF are Isabelle-2TF0 and

Isabelle-2FOF.

An experiment has been carried out over sample problems from the CASC-J6

THF0 division. Table 4.12 shows the result of the experiment on this set of THF0

problems. There are thirteen paths for all THF0 problems. The Average time is

the average time over all successful problems in each row. If a THF0 problem

is eventually translated to CNF and it is also EPR, it can be also translated to

Propositional Logic. As it is illustrated in Table 4.12, only one problem is EPR.

However, this problem was not recognized to be EPR when it is translated through
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the path THF0.TFF0.FOF.CNF, so there was no problem solved through the path

THF0.TFF0.FOF.CNF.Prop.

Table 4.13 shows that by increasing the number of processors which path is the

best to be picked as an additional path to the path set to maximize the number of

problems solved. Out of 200 sample problems in THF0, 114 problems can be solved

through all paths together. The four paths shown in Table 4.13 all together can solve

all of these problems, so adding more than four CPUs will not increase the chance of

a problem being solved.
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Table 4.8: Results of Comparing Paths from TFF0
Paths Tools Total Successful Average

time
Timed-
out

Failed

TFF0.FOF Monotonox-
2FOF-e3c1636 >
Vampire-2.6

97 36 (37%) 1.423 58 (59%) 3 (3%)

TFF0.FOF.
CNF

Monotonox-
2FOF-e3c1636
> ECNF-1.6 >
Vampire-2.6

97 31 (31%) 1.025 61 (62%) 5 (5%)

TFF0.CNF Monotonox-
2CNF-e3c1636 >
Vampire-2.6

97 24 (24%) 1.766 31 (31%) 42
(43%)

TFF0 Princess-120604 97 12 (12%) 12.061 84 (86%) 1 (1%)
TFF0.CNF.
Prop

Monotonox-
2CNF-e3c1636 >
EGround-1.6 >
MiniSAT-2.2.0

27 0 (0%) 0.0 4 (14%) 23
(85%)

TFF0.FOF.
CNF.Prop

Monotonox-
2FOF-e3c1636
> ECNF-1.6 >
EGround-1.6 >
MiniSAT-2.2.0

27 0 (0%) 0.0 0 (0%) 27
(100%)

TFF0.CNF.
DL

Monotonox-
2CNF-e3c1636
> Saffron-1.0 >
HermiT-1.3.8

15 2 (13%) 0.231 0 (0%) 13
(86%)

TFF0.FOF.
CNF.DL

Monotonox-
2FOF-e3c1636
> ECNF-1.6 >
Saffron-1.0 >
HermiT-1.3.8

10 5 (50%) 0.216 0 (0%) 5 (50%)

Table 4.9: Paths from TFF0 in Parallel
CPUs Path Exclusive Problems Total Solved Average Time

1 TFF0.FOF 36 36 1.384
2 TFF0.FOF.CNF.DL 5 41 1.238
3 TFF0 2 43 1.31
4 TFF0.CNF.DL 1 44 1.282
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Table 4.10: Results of Comparing Paths from TFF1
Paths Tools Total Successful Average

time
Timed-
out

Failed

TFF1.FOF.
CNF

Why3-FOF-0.71
> ECNF-1.6 >
Vampire-2.6

987 348
(35%)

0.761 609
(61%)

30
(3%)

TFF1.TFF0.
FOF

Why3-TFF0-0.71
> Monotonox-
2FOF-e3c1636 >
Vampire-2.6

987 329
(33%)

0.898 627
(63%)

31
(3%)

TFF1.FOF Why3-FOF-0.71 >
Vampire-2.6

987 317
(32%)

0.806 640
(64%)

30
(3%)

TFF1 Alt-Ergo-0.94 987 312
(31%)

1.032 675
(68%)

0
(0%)

TFF1.TFF0.
CNF

Why3-TFF0-0.71
> Monotonox-
2CNF-e3c1636 >
Vampire-2.6

987 276
(27%)

1.689 658
(66%)

53
(5%)

TFF1.TFF0 Why3-TFF0-0.71 >
Princess-120604

987 33 (3%) 12.642 924
(93%)

30
(3%)

TFF1.TFF0.
FOF.CNF

Why3-TFF0-0.71
> Monotonox-
2FOF-e3c1636
> ECNF-1.6 >
Vampire-2.6

986 16 (1%) 0.835 32
(3%)

938
(95%)

TFF1.TFF0.
FOF.CNF.
DL

Why3-TFF0-0.71 >
Monotonox-2FOF-
e3c1636 > ECNF-
1.6 > Saffron-1.0 >
HermiT-1.3.8

987 2 (0%) 0.145 1 (0%) 984
(99%)

TFF1.TFF0.
CNF.DL

Why3-TFF0-0.71
> Monotonox-
2CNF-e3c1636
> Saffron-1.0 >
HermiT-1.3.8

987 0 (0%) 0.0 1 (0%) 986
(99%)

TFF1.FOF.
CNF.DL

Why3-FOF-0.71
> ECNF-1.6 >
Saffron-1.0 >
HermiT-1.3.8

987 0 (0%) 0.0 31
(3%)

956
(96%)
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Table 4.11: Paths from TFF1 in Parallel
CPUs Path Exclusive Problems Total Solved Average Time

1 TFF1.FOF.CNF 348 348 0.761
2 TFF1 23 371 0.597
3 TFF1.TFF0.FOF 9 380 0.531
4 TFF1.FOF 5 385 0.498

Table 4.12: Results of Comparing Paths from THF0
THF0.FOF Isabelle-2FOF >

Vampire-3.0
200 78 (39%) 8.953 80 (40%) 42 (21%)

THF0 Isabelle-HOT-
2013

200 78 (39%) 11.856 122
(61%)

0 (0%)

THF0.TFF0.
CNF

Isabelle-2TF0
> Monotonox-
2CNF-e3c1636 >
Vampire-3.0

200 52 (26%) 5.745 75 (37%) 73 (36%)

THF0.TFF0 Isabelle-2TF0 >
Princess-120604

200 24 (12%) 14.893 173
(86%)

3 (1%)

THF0.TFF0.
FOF.CNF

Isabelle-2TF0 >
Isabelle-2FOF
> ECNF-1.8 >
Vampire-3.0

200 0 (0%) 0.0 196
(98%)

4 (2%)

THF0.FOF.
CNF

Isabelle-2FOF
> ECNF-1.8 >
Vampire-3.0

200 0 (0%) 0.0 194
(97%)

6 (3%)

THF0.TFF0.
FOF

Isabelle-2TF0 >
Isabelle-2FOF >
Vampire-3.0

200 77 (38%) 11.411 82 (41%) 40 (20%)

THF0.TFF0.
CNF.Prop

Isabelle-2TF0
> Monotonox-
2CNF-e3c1636 >
EGround-1.8 >
MiniSAT-2.2.0

1 0 (0%) 0.0 0 (0%) 1 (100%)

THF0.TFF0.
FOF.CNF.
Prop

Isabelle-2TF0 >
Isabelle-2FOF
> ECNF-1.8 >
EGround-1.8 >
MiniSAT-2.2.0

1 0 (0%) 0.0 0 (0%) 1 (100%)

THF0.FOF.
CNF.Prop

Isabelle-2FOF
> ECNF-1.8 >
EGround-1.8 >
MiniSAT-2.2.0

1 0 (0%) 0.0 0 (0%) 1 (100%)
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Table 4.13: Paths from THF0 in Parallel
CPUs Path Exclusive Problems Total Solved Average Time

1 THF0.FOF 78 78 8.838
2 THF0 33 111 9.374
3 THF0.TFF0.FOF 2 113 9.426
4 THF0.TFF0.CNF 1 114 8.148
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Conclusion

5.1 Review of the Thesis

In this research, a survey of some logics has been presented. The logics include Typed

Higher Order Form (THF0), Typed First Order Form - polymorphic (TFF1), Typed

First Order Form - monomorphic (TFF0), First Order Form (FOF), Conjunctive

Normal Form (CNF), Effectively Propositional Form (EPR), Description Logic (DL),

and Propositional Logic (Prop). For each logic, properties, syntax and semantics are

briefly explained, and common Automated Theorem Proving (ATP) systems, and

translators to less expressive logics are introduced. The expressivities of these logics

are different. Except for Prop, DL, and EPR, none of these logics are decidable. A

satisfiability transforming procedure for translating CNF to DL, and its implementa-

tion as Saffron is presented. There are different ways of solving a problem expressed

in a logical form. It can be solved directly using the ATP system of that logic or if

possible it can be translated to a less expressive form. When it is translated to a less
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expressive form, again the same two options are available. In an experiment is this

research, all possible ways of solving a problem in a logical form is compared.

5.2 Contributions and Conclusions

The results of the experiments over different ways of solving problem show that more

TFF0 and TFF1 problems are solved by translations to less expressive logics than by

using the ATP systems of the source logics. The number of THF0 problems solved

by the THF0 ATP system and by translation to FOF and then using the FOF ATP

system is the same. However, the translation approach is quicker.

When more than one CPU is available, simultaneously solving a CNF problem

with only constants and predicates with arity less than two, and a THF0 problem

through several paths remarkably increases the chance of the problem to be solved,

comparing to solving the problem through the best paths from CNF and THF0.

In this research, Saffron, a CNF to DL translator is developed. No such translator

was available before. DL is more expressive than Prop, and less expressive than EPR.

DL, as a specific logic for expressing ontologies is not a part of TPTP world, and there

is no TPTP syntax for it. However, it can now be embedded in the TPTP world, so

there is a chance to compare this logic with other TPTP logics. Some CNF problems

(49 out of 262) are solved by translation to DL using Saffron, and then using HermiT

to solve them. None of these problems can be solved using iProver, an appropriate
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EPR ATP system, with time limit of 60 seconds. This shows that there are some

types of CNF problems that can be uniquely solved using Saffron and HermiT in a

reasonable amount of time.

5.3 Future Work

In the future Saffron and HermiT can be combined together to solve CNF problems

by translating them to DL and then reasoning about them. The implementation

of Saffron can be optimized, so the translation can be done faster. More features

can also be added to Saffron, to translate more CNF clauses. This can be done

by a study over the output of the experiment carried out in Chapter 4, analysis of

problems that are successfully translated, and the problems that their unsatisfiability

are confirmed.
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